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In this lecture, | will be examining the impact of extracting a portion of a signal and
find the spectrum of this extracted portion instead of the signal. This process of
taking a portion of signal is known as “windowing”.

Then | will discuss the calculation of the Fourier transform of a signal on a computer
using discrete method, known as Discrete Fourier transform or DFT.

Finally I will explain how to calculate energy of a signal in the frequency, instead of
the time, domain.




Windowing and its effect

+ Extracting a segment of a signal in time is the same as multiplying the
signal with a rectangular window:
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Extracting a portion of signal from an everlasting sinusoidal signal is the same as
multiplying the everlasting sinewave with a rectangular function as shown.

As mentioned in the last lecture, multiplying in the time domain is equivalent to an
operation known as “convolution” in the frequency domain. We will not examine
convolution until a later lecture.

It is sufficient for you to know for now that convolution results in the spectrum of
the original sinewave, which is two spikes (impulses) at £w,, being modified by the
spectrum of the rectangular function as shown above.

The impact of applying the rectangular window (i.e. function) in the time domain is
to spread out the energy of the sinusoid around the impulses.



Mainlobe & Sidelobes in dB

+ Detail effects of windowing (rectangular window):
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Let us examine the magnitude spectrum of the rectangular function (in dB). It has a main
region where most of the energy lies. This is call the mainlobe of the spectrum. In
addition, energy is also spread to its neighbouring lobes, the sidelobes. This is known as
“leakages” — energy leaked from the main frequency component.

The reason for such energy spreading to higher frequency is that the rectangular window
causes discontinuity (or abrupt changes) at the edges of the window. For example, in Lab
2 exercise 3, you have discovered the difference between the spectrum for a 1000Hz and
a 1100Hz sinewave with 1000 samples extracted and sampled to 8000Hz. The 1000Hz
has 125 exact cycles in the rectangular window. However the 1100Hz sinewave has 137.5
cycles extracted by the rectangular window.
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Remedies for side effects of truncation

1. Make mainlobe width as narrow as possible = implies as wide a window
as possible.

2. Avoid big discontinuity in the windowing function to reduce leakage (i.e.

high frequency sidelobes).

3. 1) and 2) above are incompatible — therefore needs a compromise.

+ Commonly replace rectangular window with one of these:

Hamming window
Hanning window
Barlett window
Blackman window
Kaiser window
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Instead of using a rectangular window function to “extract” portion of the signal to
analyse, it is far better to apply a smooth window function, where the edges of the
window tails off gradually. In the lab we, use a Hamming window. Shown here is
the plot of the Hanning window, which is really very similar.

There are two impact on applying such a window:

1.It reduces the sidelobes substantially and therefore reduces the leakages.

2.The total energy is reduced, but energy of the signal at each frequency relative to
each other is unaffected. In other words, if your unwindowed signal is the sum of
two sinusoids 1 and 2, the magnitudes of both are reduced by using one of these
windows, but their ratio remains the same.



Comparison of different windowing functions
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Here is a table of the various windows commonly used as a function of time, the
width of the mainlabe (the narrower, the better), the rate at which the sidelobe
energy falls away (the faster rate the better), and the height of the first sidelobe.



Spectral Sampling (1)

¢ As expected, time domain sampling has a dual: spectral
sampling.

+ Consider a time limited signal x(t) with a spectrum X(o).
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Next we will examine how the computer calculate the spectrum — using discrete
values instead of continuous values.

First remind yourself the definition of Fourier Transform.



Spectral Sampling (2)

o If we now CONSTRUCT a periodic signal xto(t), we will
expect the spectrum of this signal to be discrete (expressed
as Fourier series). D !
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When you use the Matlab function fft(sig) to compute the spectral component
values, you perform the Discrete Fourier Transform (DFT) calculation using a fast
algorithm. The fast algorithm is known as Fast Fourier Transform. How this is done
is not important. It is sufficient to know that a straight calculation of DFTona N
sample signal has a computation complexity of order(N?). Using FFT, we reduce this
order(N log N). Say, if N 1000, using FFT instead of DFT would be over 300 times
faster!

To compute the FFT or DFT of a time domain signal, we first extract the signal with
an appropriate window (N samples in a window of T;), then make up a periodic
signal as shown. (This is the formulation used inside the computer algorithm. The
signal does not really exists as everlasting periodic signal does not happen in real
life!)

The DFT/FFT algorithm basically compute the Fourier coefficients of this repetitive
signal using the standard Fourier series equation as shown.

The maths here just shows that the effect of DFT is to take discrete samples of the
Fourier Transform of our windowed signal at frequency steps of f, = 1/T,.



The Discrete Fourier Transform (DFT) (1)

+ Fourier transform is computed (on computers) using discrete techniques.

¢ Such numerical computation of the Fourier transform is known as
Discrete Fourier Transform (DFT).

+ Begin with time-limited signal x(t), we want to compute its Fourier
Transform X(o).
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+ We know the effect of sampling in time domain:

il - -

e T e

L8.5

PYKC 21 Jan 2026 DESE50002 — Electronics 2 Lecture 6 Slide 8

Let us examine DFT from a conceptual, instead of mathematical, point of view.

When we take a continuous time signal x(t) and obtain its spectrum using Fourier
transform, we get X(o).

If we sample the continuous time signal, the resulting discrete time signal has a
different spectrum as compared to that of the original signal. In fact, the original
spectrum is repeated indefinitely at each frequency location %= n fs, where fs is the
sampling frequency and n is all integers (plus or minus) n==*1, =2 ......

This result is very important. It says that the sampling process modifies the
spectrum of the signal in this particular way that has implications to how often we

need to sample (i.e. what fs to choose), how we can avoid corrupt the signal
through the sampling process, and finally, how can we get back the original
continuous time signal from the discrete time signal.



The Discrete Fourier Transform (DFT) (2)
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The most important message of this slide is how to work out Ny and T, for a given
sampling frequency fs (sampling period Ts = 1/fs).

The frequency step (for each successive frequency bin in the FFT result) = 1/T,.
Given that the sampling frequency is fs, the number of samples you need is:

Number of samples: Ny =T, * fs

Frequency step: fo=1/Ty=1s/ Ny

For example, if fs =10000Hz and we have a window width Ty of 0.1sec, Ng is 1000.

The frequency step is therefore 10Hz because in taking the DFT we pretend that the
sampled signal in the Ty window is repeated forever. Since the period of this
periodic signal is T,. When we take the DFT of this periodic signal, we get the
Fourier coefficient for the fundamental frequency and all the harmonics.

FFT is just a fast algorithm to computer the DFT coefficients. How the FFT algorithm
works is outside the scope of this module. However, it is important to know this.

The complexity of DFT algorithm for a N point transform, which is also called the
“Order” of the algorithm, is proportional to N2 (or it is written as O(N?).

The complexity for an N point FFT is O(Nlog,N).
If N=1024, FFT is 100 times faster than DFT. DFT complexity = 1024 x 1024 =~ 10°.
FFT complexity = 1024 x 1024 ~10%.



Picket Fence Effect

+ Numerical computation method yields uniform sampling
values of X(w).

+ Information between samples in spectrum is missing — picket
fence effect:
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In other words, when we perform DFT, we create a periodic signal using a windowed
version of the original (long) signal. Because of this action of constructing of a periodic
signal from the original portion of signal, we get a spectrum with discrete frequency bins.
This is in contrast with Fourier transform, which produces a continuous frequency
spectrum (with ALL frequencies).

DFT is a computer based algorithm, therefore everything must be discrete.

The previous slide shows that the effect of DFT is to SAMPLE the continuous spectrum
from the Fourier transform, and the rate of sampling (in frequency) is given by the
frequency step 1/T; = fs/Nj.

It is helpful to consider DFT as looking at the spectrum of the original signal through a
picket fence. You only see samples of the spectrum at discrete frequencies. It also means
that you may miss peak components if they fall between the sampling points (between
the fence gaps and blocked by the fence posts).

Let us consider an example where we sample a signal at 8000 Hz, and we extract 1000
samples to analyse using DFT (actually we used FFT, the fast version of DFT in Matlab).

The frequency resolution (step) is 8000Hz/ 1000 = 8Hz. The DFT algorithm will generate a
spectrum between -4000Hz and +4000Hz in steps of 8Hz. This yields 1000 frequency bins.
In Matlab code, magnitude[1] = OHz or dc value. magnitude[2] = 8Hz bin etc.. Now if you
use the tuning fork app to generate a 1000Hz tone, you will see a clear spike in
magnitude[126] (exactly 125 x8 = 1000Hz). However, if you use a 1100Hz tone, the signal
falls between magnitude[138] and magnitude[139] (bin 138.5 = 1100/8 + 1). So what you
should see is the energy shared in the two neighbouring frequency bins.



Formal definition of DFT

¢ If x[nT] and X[rmg] are the nt" and rth samples of x(t) and X(»)
respectively, then we define:
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Here is a formal mathematical definition of Discrete Fourier Transform. You are not
really required to remember this. If you compare this with the formal definition of
the Fourier transform (not the discrete version), they look very similar except that

1. x(t) now becomes x[nT] because samples are discrete. T, is the sampling interval
and T, = 1/f..

2. g is the fundamental frequency as we repeat the extract signals every T,. ®q =
2T[f0 = 2T[/T0.

3. DFT produces results Xr, the amount of signal at the rth frequency bin, whose
frequency is rQ)y, where Q) is the discrete frequency step.



Parseval’s Theorem

+ The energy of a signal x(t) can be derived in time or frequency domain:
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The next three slides are about energy of a signal.

We have seen before in Lecture 1 and Lab 2 Exercise 4 that we can compute the

energy of a signal by integrating the square of the signal x?(t) over the duration
where the signal is non-zero.

Parseval’s Theorem basically says that you can do this energy calculation equally
well in the frequency domain. The important result here is the equation:

o0 l o0 5
B, e / RO b == = / X (@) do
s 2 J—s0

We can compute energy of the signal by integrating over all the spectral frequencies
(m = -o= to ® = +o°) the square of the magnitude of the spectrum. The 1/2mis a
scaling factor to account for the fact that we using radians/sec as frequency and not
Hz (cycles/sec).



Energy Spectral Density of a signal

+ Total energy is area under the curve of |X(w)|2vs o (divided by 2r).
|X(w)?

0 wy w >

+ The energy over a small frequency band A® (Aw—0) is:

1 = A
AE, = —|X@] o= |X@[Af —==AfHz
2 2r

Energy spectral density (per
unit bandwidth in Hz) L7.6
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Therefore we can view the plot of |X(w)|? as the energy spectral density of the

signal. We can then ask the question: “how much energy is between two
frequencies?” by integrating under the curve as shown.

We can this energy spectral density because the unit can be seen as energy per unit
bandwith (in Hz).



Energy Spectral Density of a REAL signal

+ Ifx(t) is a real signal, then X(®») and X(-») are conjugate:

1X()* = X (@)X* () = X (@)X (—w)

+ This implies that X(o) is an even function. Therefore
} = x
E; = —/ | X (w)|"dw
T Jo

+ Consequently, the energy contributed by a real signal by spectral
components between w, and o, is:

w)

1 2
AE, = —/ 1X (@)|* do
T Jo
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For real signals, it can be shown that the spectrum is symmetrical about 0, i.e. X(®)
= X(-»). Therefore we can simplify the calculation of energy between two
frequencies ®; and ®, as shown.



Example

+ Find the energy E of signal x(t) = et u(t). Determine the frequency W
(rad/s) so that the energy contributed by the spectral component from 0 to
W is 95% of the total signal energy E.

o Take FT of x(t): 1
X(w) = -
Jo+a
+ By Parseval's theorem: 7
I g . . ™~ 1 1 ) 1
Ex=—/ |X(w)|dw=—/ ——do=—tan" —| =—
T Jo T Jo w4+ a* ma al 2a
+ Energy in band 0 to W is 95% of this, therefore:
095 1 /W dw 1 oY 1 W
—_—=— —— = —tan —| = —tan" —
2a T Jo w +a’ ma alp Ta a
0.957

w
5 =tan"' — = W = 12.706a rad/s
a

+ Note: For this signal, 95% of energy is in the lower frequency band from 0

to 12.7a rad/s or 2.02a Hz!!!
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Here is an example of how to use Parseval’s Theorem to provide useful results.

We are interested in the bandwidth of a signal which contain 95% of the energy. The
signal in question is x(t) = et u(t).

This is done by performing FT on x(t) using the FT table.

Using Parseval’s Theorem we can compute the integral and calculate the total
energy of the signal Ex.

The rest is pretty straightforward.



Three Big Ideas

1. Extracting a portion of a signal can be modelled by multiplying the signal
with a rectangular window. However, the sudden changes at the window
boundaries modify the signal spectrum.

2. This causes spectral spreading to neighbouring frequencies and
leakages to higher frequencies. Both can be reduced by using other types
of window functions such as Hamming or Hanning, which have smooth
cut offs.

3. Discrete Fourier Transform (DFT) is used to calculate the Fourier
Transform in a computer. This is done by taking the windowed portion of
the signal and construct a periodic signal from it. The resultis a
sampled Fourier Transform with frequency step f, = 1/Tg, where T, is the
window function width.
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Here are three things that worth remembering and understand.



